An Experimental Survey on Non-Negative Matrix Factorization for Single Channel Blind Source Separation
نویسندگان
چکیده
In applications such as speech and audio denoising, music transcription, music and audio based forensics, it is desirable to decompose a single-channel recording into its respective sources, commonly referred to as blind source separation (BSS). One of the techniques used in BSS is non-negative matrix factorization (NMF). In NMF both supervised and unsupervised mode of operations is used. Among them supervised mode outperforms well due to the use of pre-learned basis vectors corresponding to each underlying sources. In this paper NMF algorithms such as Lee Seung algorithms (Regularized Expectation Minimization Maximum Likelihood Algorithm (EMML) and Regularized Image Space Reconstruction Algorithm (ISRA)), Bregman Divergence algorithm (Itakura Saito NMF algorithm (IS-NMF)) and an extension to NMF, by incorporating sparsity, Sparse Non-Negative Matrix Factorization( SNMF) algorithm are used to evaluate the performance of BSS in which supervised mode is used. Here signal to distortion ratio (SDR), signal to interference ratio (SIR) and signal to artifact ratio (SAR) are measured for different speech and/or music mixtures and performance is evaluated for each combination.
منابع مشابه
Single-Channel Mixture Decomposition Using Bayesian Harmonic Models
We consider the source separation problem for single-channel music signals. After a brief review of existing methods, we focus on decomposing a mixture into components made of harmonic sinusoidal partials. We address this problem in the Bayesian framework by building a probabilistic model of the mixture combining generic priors for harmonicity, spectral envelope, note duration and continuity. E...
متن کاملNon-Negative Matrix Factorization for Blind Source Separation in Wavelet Transform Domain
This paper describes a new multilevel decomposition method for the separation of convolutive image mixtures. The proposed method uses an Adaptive Quincunx Lifting Scheme (AQLS) based on wavelet decomposition to preprocess the input data, followed by a Non-Negative Matrix Factorization whose role is to unmix the decomposed images. The unmixed images are, thereafter, reconstructed using the inver...
متن کاملNon-Negative Matrix Factorization with Sparsity Learning for Single Channel Audio Source Separation
متن کامل
Beta Divergence for Clustering in Monaural Blind Source Separation
General purpose audio blind source separation algorithms have to deal with a large dynamic range for the different sources to be separated. In our algorithm the mixture is separated into single notes. These notes are clustered to construct the melodies played by the active sources. The non-negative matrix factorization (NMF) leads to good results in clustering the notes according to spectral fe...
متن کاملNon-Negative Matrix Factorization and Its Application in Blind Sparse Source Separation with Less Sensors Than Sources
Non-Negative Matrix Factorization (NMF) implies that a given nonnegative matrix is represented by a product of two non-negative matrices. In this paper, a factorization condition (consistent condition) on basis matrix is proposed firstly. For a given consistent basis matrix, although there exist infinite solutions (factorizations) generally, the sparse solution is unique with probability one, w...
متن کامل